Facultad de Ciencias Exactas – Universidad Nacional de La Plata

Curso de Postgrado

Año	2021			Semestre	prime	ero			
Nombre del Curso									
Magnetismo y materiales magnéticos, nanomateriales.									
	Profesor Responsable (indicando las horas que participa en el dictado de clases)								
Francisc	Francisco H. Sánchez – 66 hs								
Docentes Participantes (indicando las horas que participa en el dictado de clases)									
Francisco H. Sánchez (FCE-UNLP) – 66 hs									
Claudia Rodríguez Torres (FCE-UNLP) – 66 hs									
Pedro Mendoza Zélis (FI-UNLP) – 66 hs									
Laura Steren – 4 hs (FCEN-UBA) Laura Steren – 4 hs (FCEN-UBA) Laura Steren – 4 hs (FCEN-UBA)									
Leandro Socolovsky – 2 hs (CIT Santa Cruz, UTN - FRSC) Varánica Lassalla 2 hs (INOLUSUR, Departments de Ouímica LINS)									
Verónica Lassalle – 2 hs (INQUISUR, Departamento de Química – UNS)									
Diego Muraca – 2 hs (UNICAMP – LNNANO, Campinas, Brasil)									
Jean-Marc Greneche – 4 hs (IMMM – Le Mans Université, Francia) Juan Gabriel Pamírez Poies – 2 hs (UNIANDES Regeté Colombia)									
Juan Gabriel Ramírez Rojas – 2 hs (UNIANDES, Bogotá, Colombia) Yenny Rocío Hernández – 2 hs (UNIANDES, Bogotá, Colombia)									
Duració	n Total (en h	ioras)	66 hs						
Modalid		a gaminaria ata)	Teórico – Práctico (ejercitación)						
(Teórico, teórico-práctico, seminario, etc) Tipo de evaluación prevista				Coloquio					
Especificación clara si se lo considera válido para cubrir exigencias del Doctorado.									
Válido p	ara el Docto	orado de la Facul	tad de (Ciencias Exac	etas				
Fecha de	echa de dictado Primer semestre		2021	Cupo de alumnos		30			
Inscripc	ión desde	01/03/2021		Hasta el día		05/03/2021			
Exigencias y requisitos de inscripción									
Licencia	Licenciado/a de la Facultad de Ciencias Exactas o equivalente, Licenciados o Doctores en								
Física, Física Médica, o Química, Ingenieros Físicos.									
Arancelamiento									
NO X	SÍ	Montos							

Destino de los fondos	
Mecanismo de pago	

Breve resumen de los objetivos y contenidos

Se presentarán los aspectos básicos del magnetismo en materiales, en particular su origen asociado a las corrientes y el espín electrónicos y las cantidades magnéticas básicas.

Se introducirán las interacciones que determinan la estructura magnética: energía de intercambio, de anisotropía, magnetostática (incluyendo interacciones entre partículas monodominio), de interfaz, etc.

Se describirá y analizará el orden magnético de largo alcance estable observado en materiales y su dependencia con la temperatura.

Se presentarán las técnicas de medición más difundidas tales como magnetometría de y ac (en un amplio rango de frecuencias), espectroscopía de efecto Mössbauer, microscopía óptica y electrónica de alta resolución, etc. Se discutirá su correcta utilización siguiendo protocolos específicos, y se enfatizará la necesaria complementación con técnicas de caracterización estructural adecuadas. Se introducirán los principales parámetros derivables del análisis de curvas de Magnetización vs. campo y vs. temperatura.

Se discutirán materiales en los que al menos una dimensión es nanométrica: películas delgadas, nanohilos y nanopartículas. Se abordará el efecto de la reducción de tamaño y sus consecuencias: la influencia creciente de la relación superficie a volumen, el favorecimiento del estado monodominio en sistemas "0d" (nanopartículas de materuales ferro y ferrimagnético) y la relajación del momento magnético de un nano-objeto debido a fluctuaciones térmicas, dentro de la escala temporal del experimento o la de interés de la aplicación.

En las últimas clases se introducirán algunas aplicaciones (magnetismo en óxidos de interés tecnológico, espintrónica, efectos de interfaces, aplicaciones a la biomedicina, modelado de ciclos M vs. H y desarrollo de funciones de ajuste, observación óptica de microestructuras en coloides, observaciones por HRTEM).

En estas últimas clases participarán colaboradores expertos que introducirán brevemente el tema y discutirán alguna línea de investigación original a desarrollarse en lo inmediato en sus laboratorios.

Contacto con el responsable

Dirección	Departar	mento	de Física	, Fac	cultad	de	Ciencias	Exactas,	UNLP,	subsuelo,
	oficina 6. Instituto de Física de La Plata, segundo piso, oficina 239.									
Teléfono	0221 15 548 8114			Fax						
Correo electrónico		quiquesanchezt@gmail.com, sanchez@fisica.unlp.edu.ar								

Adjuntar programa detallado de actividades

Magnetismo y materiales magnéticos, nanomateriales

Las actividades teóricas y prácticas se intercalarán a lo largo del curso. Se realizarán clases prácticas de problemas.

Programa

- 1. Origen del momento magnético en materiales: corrientes y espín electrónicos. Magnetización. Campo magnético, inducción magnética, nomenclatura y unidades. Interacción del momento con un campo aplicado, energía, fuerza y torque asociados. Ecuación de Landau-Lifshitz-Gilbert, efectos disipativos. Permeabilidad y susceptibilidad.
- 2. Diamagnetismo y paramagnetismo. Magnetismo localizado. Momento de iones paramagnéticos. Leyes de Curie y Curie-Weiss. Respuesta de un paramagneto al campo aplicado. Funciones de Brillouin y Langevin.
- 3. Magnetización espontánea. Interacción de intercambio. intercambio directo, superintercambio, doble intercambio, intercambio indirecto de Ruderman-Kittel-Kasuya-Yosida, intercambio anisotrópico de Dzyaloshinskii-Moriya.
- 4. Orden magnético. Ferromagnetos, antiferromagnetos, ferrimagnetos.
- 5. Anisotropía magnética. Anisotropía magneto-cristalina. Interacción magneto-elástica. Anisotropía de intercambio.
- 6. Interacción magnetoestática. Efectos (anisotropía) de forma. Campo y tensor desmagnetizantes. Remanencia e histéresis.
- 7. Partículas monodominio. Modelo de Stoner-Wohlfarth a T = 0 K. Extensión a temperatura finita. Relajación magnética. Superparamagnetismo. Superparamagneto anisotrópico, superparamagneto interactuante (tensor desmagnetizante efectivo). Condición para el bloqueo magnético, respuesta dentro y fuera del equilibrio. Ventana temporal del experimento, medidas ac, estudios Mössbauer. Películas delgadas, nano y microhilos, nanopilares.
- 8. Técnicas y estudios experimentales. Buenas prácticas de medición, selección de protocolos adecuados. Experimentos de y ac, disipación de potencia a altas frecuencias, SAR (Specific Absorption Rate). Modelado de ciclos, funciones de ajuste. Formas correctas de presentar los resultados.

Clases especiales:

- *Claudia Rodríguez Torres (UNLP): Magnetismo en óxidos: interacciones de intercambio y el rol de los defectos.
- *Laura Steren (UBA): Espintrónica. Efectos de Interfaces y heteroestructuras.
- *Leandro Socolovsky (CIT Santa Cruz, UTN FRSC): Espintrónica y sistemas granulares.
- *Pedro Mendoza Zélis (UNLP): Hipertermia magnética. Mediciones CSAR (Calorimetric SAR) vs. ESAR (Electromagnetic [inductive] SAR). Modelado de ciclos para dispersiones coloidales y monolíticas de nanopartículas, y desarrollo de funciones de ajuste.
- *Jean-Marc Greneche (IMMM Le Mans Université, Francia): Efectos de la nanoesteructura sobre el magnetismo, superficies, interfaces, proximidad, defectos.
- *Verónica Lassalle (INQUISUR, Departamento de Química UNS): Síntesis de nanopartículas magnéticas funcionalizadas para aplicaciones biomédicas: Diseño de agentes teranósticos magnéticos.
- *Diego Muraca (UNICAMP LNNANO, Campinas, Brasil): Microscopía Electrónica de Alta Resolución de Nanomateriales Magnéticos.
- *Juan Gabriel Ramírez Rojas (UNIANDES, Bogotá, Colombia): Dinámica de magnetismo y resonancia ferromagnética en películas delgadas y nanopartículas.
- *Yenny Rocío Hernández (UNIANDES, Bogotá, Colombia): Fabricación de Nanomateriales 0D hasta 2D.

Todos los docentes argentinos son investigadores del CONICET

Bibliografía

- Introduction to magnetic materials, B. D. Cullity and C. D. Graham, Wiley, 2009
- Amikam Aharoni, Introduction to the Theory of Ferromagnetism, Clarendon Press, 2000.
- Nicola A. Spaldin, Magnetic Materials, Fundamentals and Applications. Cambridge University Press, 2011.
- Alex Hubert and Rudolf Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures. Springer-Verlag, 1998.
- Vijay K. Varadan, Linfeng Chen and Jining Xie. Nanomedicine. Design and applications of magnetic nanomaterials, nanosensors and nanosystems. John Wiley & Sons, 2008.

Destinatarios: Licenciados o Doctores en Física, Física Médica, o Química, Ingenieros Físicos.

Cupo: 30 participantes.

Modalidad: a distancia (on line mediante plataforma Classroom de Google, usando la cuenta institucional provista por la FCE-UNLP al docente responsable). Dos clases semanales (lunes y viernes) de 2 hs. Cada una. Duración: 14 semanas. Un participante por clase dispondrá de 8 minutos para compartir, a grandes rasgos, aspectos de su proyecto de investigación.

El curso incluye ejercicios y problemas a resolver por los participantes.

Dr. Francisco H. Sánchez